
-1-

European Standards for Writing and
Documenting Exchangeable Fortran 90 Code

Version 1.1
Phillip Andrews (UKMO), Gerard Cats (KNMI/HIRLAM), David Dent (ECMWF), Michael Gertz
(DWD), Jean Louis Ricard (Meteo France)

Contents:
• Introduction

• Documentation

• External Documentation

• Internal Documentation

• Coding Rules For Packages

• Guidance For The Use Of Dynamic Memory

• Coding Rules For Routines

• Banned Fortran Features

• General Style Rules

• Use Of New Fortran Features

• Enforcing These Standards

• References

• Appendix A: Modification History

• Appendix B: Standard Headers

• Program Header

• Subroutine header

• Function header

• Module header

• Appendix C: Examples

• A VAR subroutine

• Operators

• Generic Functions

-2-

Introduction
The aim of this document is to provide a framework for the use of Fortran 90 in European
meteorological organizations and thereby to facilitate the exchange of code between these . In order to
achieve this goal we set standards for the documentation of code, both internal and external to the
software itself, as well as setting standards for writing the code. The latter standards are designed to
improve code readability and maintainability as well as to ensure, as far as possible, its portability and
the efficient use of computer resources.

Documentation
Documentation may be split into two categories: external documentation, outside the code; and
internal documentation, inside the code. These are described in sections 2.1 and 2.2 respectively. In
order for the documentation to be useful it needs to be both up to date and readable at centres other
than that at which the code was originally produced. Since these other centres may wish or need to
modify the imported code we specify that all documentation, both internal and external, must be
available in English.

• External Documentation
In most cases this will be provided at the package level, rather than for each individual routine.
It must include the following:

1. Top Level Scientific documentation: this sets out the problem being solved by the
package and the scientific rationale for the solution method adopted. This
documentation should be independent of (i.e. not refer to) the code itself.

2. Implementation documentation: this documents a particular implementation of the
solution method described in the scientific documentation. All routines (subroutines,
functions, modules etc...) in the package should be listed by name together with a brief
description of what they do. A calling tree for routines within the package must be
included.

3. A User Guide: this describes in detail all inputs into the package. This includes both
subroutine arguments to the package and any switches or 'tuneable' variables within the
package. Where appropriate default values; sensible value ranges; etc should be given.
Any files or namelists read should be described in detail.

• Internal Documentation
This is to be applied at the individual routine level. There are four types of internal
documentation, all of which must be present.

1. Procedure headers: every subroutine, function, module etc must have a header. The
purpose of the header is to describe the function of the routine, probably by referring to
external documentation, and to document the variables used within the routine. All
variables used within a routine must be declared in the header and commented as to
their purpose. It is a requirement of this standard that the headers listed in Appendix A
be used and completed fully. Centres are allowed to add extra sections to these headers
if they so wish.

2. Section comments: these divide the code into numbered logical sections and may refer
to the external documentation. These comments must be placed on their own lines at the

-3-

start of the section they are defining. The recommended format for section comments is:

!--

! <Section number> <Section title>

!--

where the text in <> is to be replaced appropriately.

3. Other comments: these are aimed at a programmer reading the code and are intended to
simplify the task of understanding what is going on. These comments must be placed
either immediately before or on the same line as the code they are commenting. The
recommended format for these comments is:

 ! <Comment>

where the text in <> is to be replaced appropriately.

4. Meaningful names: code is much more readable if meaningful words are used to
construct variable & subprogram names.

It is recommended that all internal documentation be written in English. However, it is
recognized that this may not always be possible, so alternative rules for native language
comments with duplicate English comments are provided.

i) Meaningful names may be written in native language.

ii) Section comments (see above) written in native language must be duplicated in
English.

iii) Other comments (see above) written in native language should preferably be
duplicated in English.

iv) Description and method sections of the header written in native language must be
duplicated in English.

v) Comments describing the declared variables in the header section may be written in
native language. A duplicate declaration with an English language comment should be
placed in a separate file (containing all such duplicate declarations for the package).
Since repeated use of the same variable name for different purposes with a given
package is forbidden, a simple tool can be provided to replace the native language
declarations with English language declarations in the source files of ported code.

Coding Rules For Packages
These rules are loosely based on the "plug compatibility" rules of Kalnay et al. (1989). Rules which
appear elsewhere in this document have not been duplicated in this section.

• A package shall refer only to its own modules and subprograms and to those intrinsic routines
included in the Fortran 90 standard.

There may well be a need to extend this to include named (in this document) libraries such as
the NAG library. We could even have a joint Met. utilities library which could contain things
such as multigrid p.d.e. solvers or routines to calculate saturated vapour pressure...

-4-

• A package shall provide separate set up and running procedures, each with a single entry point.
All initialization of static data must be done in the set up procedure and this data must not be
altered by the running procedure.

• External communication with the package must be via:

1. The argument lists of the packages entry and set up routines.

2. A NAMELIST file read.

3. Environment variables read by a set of standard routines. The environment variables
must be documented in and set by a script appropriate to the operating system in use
(i.e. a posix script for the unix operating system).

We could also allow the use of standard modules, to be defined in this document,
containing information on the grid type and resolution etc; error handling...

4. Internally the package may use Modules - for example the set up and running
procedures may communicate in this way.

5. Interface blocks must be provided for the set up and running procedures (possibly via
module(s)). This allows the use of assumed shape arrays, optional arguments, etc as
well as allowing the compiler to check that the actual and dummy arguments types
match. If variables in these external argument lists are of derived type, a module must
be supplied which contains the type definition statements required to make these
derived types available to the routine calling the package.

6. The package shall not terminate program execution. If any error occurs within the
package it should gracefully exit, externally reporting the error via an integer variable in
its argument list (+ve = fatal error). Packages should also write a diagnostic message
describing the problem, using fortran I/O, to an 'error stream' unit number selectable via
the package's set up routine.

Note that if the package starts at the unix script, rather than Fortran, level making a
graceful exit includes returning control to the package's script level by using a STOP
statement in the Fortran part of the package.

7. The package should be written so that it is as resolution independent as possible. The
resolution must be adjustable via the set up routine for the package.

8. Precompilers: these are used, for example, to provide a means of selecting (or
deselecting) parts of the code for compilation. Clearly to simplify portability of code we
need to all use the same precompiler, and this needs to be available to every centre. The
C precompiler is probably the best option since it will be found on all machines using
the unix operating system.

Adopting this as the standard precompiler will have some problems as different centres
are currently committed to different precompilers. However, it may not be too big a task
for each centre to convert from their current precompiler to the C precompiler.

9. All unix scripts must be written using the posix shell. This is a standardized shell,
available on all POSIX compliant unix systems, with many useful features.

10. Each program unit should be stored in a separate file.

-5-

Guidance For The Use Of Dynamic Memory
The use of dynamic memory is highly desirable as, in principle, it allows one set of compiled code to
work for any specified resolution (or at least up to hardware memory limits); and allows the efficient
reuse of work space memory. Care must be taken, however, as there is potential for inefficient memory
usage, particularly in parallelized code. For example heap fragmentation can occur if space is allocated
by a lower level routine and then not freed before control is passed back up the calling tree. There are
three ways of obtaining dynamic memory in Fortran 90:

1. Automatic arrays: These are arrays initially declared within a subprogram whose extents
depend upon variables known at runtime e.g. variables passed into the subprogram via its
argument list.

2. Pointer arrays: Array variables declared with the POINTER attribute may be allocated space at
run time by using the ALLOCATE command.

3. Allocatable arrays: Array variables declared with the ALLOCATABLE attribute may be
allocated space at run time by using the ALLOCATE command. However, unlike pointers,
allocatables are not allowed inside derived data types.

• Use automatic arrays in preference to the other forms of dynamic memory allocation.

• Space allocated using b) and c) above must be explicitly freed using the DEALLOCATE
statement.

• In a given program unit do not repeatedly ALLOCATE space, DEALLOCATE it and then
ALLOCATE a larger block of space. This will almost certainly generate large amounts of
unusable memory.

• Always test the success of a dynamic memory allocation and deallocation. The ALLOCATE
and DEALLOCATE statements have an optional argument to let you do this.

Coding Rules For Routines
By routines we mean any fortran program unit such as a subroutine, function, module or program.
These rules are designed to encourage good structured programming practice, to simplify maintenance
tasks, and to ease readability of exchanged code by establishing some basic common style rules.

Banned Fortran Features
Some of the following sections detail features deprecated in or made redundant by Fortran 90. Others
ban features whose use is deemed to be bad programming practice as they can degrade the
maintainability of code.

1. COMMON blocks - use Modules instead.

2. EQUIVALENCE - use POINTERS or derived data types instead.

3. Assigned and computed GO TOs - use the CASE construct instead.

4. Arithmetic IF statements - use the block IF construct instead.

5. Labels (only one allowed use).

• Labelled DO constructs - use End DO instead.

-6-

• I/O routine's End = and ERR = use IOSTAT instead.

• FORMAT statements: use Character parameters or explicit format specifiers inside the
Read or Write statement instead.

• GO TO

The only recognized use of GO TO, indeed of labels, is to jump to the error handling
section at the end of a routine on detection of an error. The jump must be to a
CONTINUE statement and the label used must be 9999. Evens so, it is recommended
that this practice be avoided.

Any other use of GO TO can probably be avoided by making use of IF, CASE, DO
WHILE, EXIT or CYCLE statements. If a GO TO really has to be used, then clearly
comment it to explain what is going on and terminate the jump on a similarly
commented CONTINUE statement.

6. PAUSE

7. ENTRY statements: - a subprogram may only have one entry point.

8. Functions with side effects i.e. functions that alter variables in their argument list or in modules
used by the function; or one that performs I/O operations. This is very common in C
programming, but can be confusing. Also, efficiencies can be made if the compiler knows that
functions have no side effects. High Performance Fortran, a variant of Fortran 90 designed for
massively parallel computers, will allow such instructions.

9. Implicitly changing the shape of an array when passing it into a subroutine. Although actually
forbidden in the standard it was very common practice in FORTRAN 77 to pass 'n' dimensional
arrays into a subroutine where they would, say, be treated as a 1 dimensional array. This
practice, though banned in Fortran 90, is still possible with external routines for which no
Interface block has been supplied. This only works because of assumptions made about how
the data is stored: it is therefore unlikely to work on a massively parallel computer. Hence the
practice is banned.

Style Rules
The general ethos is to write portable code that is easily readable and maintainable. Code should be
written in as general a way as possible to allow for unforseen modifications. In practice this means that
coding will take a little longer. This extra effort is well spent, however, as maintenance costs will be
reduced over the lifetime of the software.

1. Use free format syntax.

2. The maximum line length permitted is 80 characters. Fortran 90 allows a line length of up to
132 characters, however this could cause problems when viewed on older terminals, or if print
outs have to be obtained on A4 paper.

3. Implicit none must be used in all program units. This ensures that all variables must be
explicitly declared, and hence documented. It also allows the compiler to detect typographical
errors in variable names.

4. Use meaningful variable names, preferably in English. Recognized abbreviations are
acceptable as a means of preventing variable names getting too long.

-7-

5. Fortran statements must be written in upper case only or with initial letter capitalization and the
rest in lower case. Names, of variables, parameters, subroutines etc may be written in mixed,
mostly lower, case.

6. To improve readability indent code within DO; DO WHILE; block IF; CASE; Interface; etc
constructs by 2 characters.

7. Indent continuation lines to ensure that e.g. parts of a multi line equation line up in a readable
manner.

8. Where they occur on separate lines indent type c) internal comments to reflect the structure of
the code. If this is done by one character less than the code indentation comments are clearly
separated from the code yet do not break up its structure.

9. Use blank space, in the horizontal and vertical, to improve readability. In particular leave blank
space between variables and operators, and try to line up related code into columns. For
example,

instead of:

 ! Initialize Variables

x=1

MEANINGFUL_NAME=3.0

SILLY_NAME=2.0

write:

 ! Initialize variables

x = 1

MeaningfulName = 3.0

SillyName = 2.0

Similarly, try to make equations recognizable and readable as equations. Readability is greatly
enhanced by starting a continuation line with an operator placed in an appropriate column
rather than ending the continued line with an operator.

10. Do not use tab characters in your code: this will ensure that the code looks as intended when
ported.

11. Separate the information to be output from the formatting information on how to output it on
I/O statements. That is don't put text inside the brackets of the I/O statement.

12. Delete unused header components.

13. There was a strong desire by many of the authors of this document to include a recommended
naming convention for variables. It was decided however that Fortran 77 conventions were
unsuitable, and that more experience of Fortran 90 was required before an appropriate
convention could be specified. It is intended that such a convention be included in a revised
version of this document.

-8-

Use Of New Fortran Features
It is inevitable that there will be 'silly' ways to use the new features introduced into Fortran 90. Clearly
we may want to ban such uses and to recommend certain practices over others. However, there will
have to be a certain amount of experimentation with the new language until we gain enough
experience to make a complete list of such recommendations. The following rules will have to be
amended and expanded in the light of such experience.

1. We recommend the use of Use, ONLY to specify which of the variables, type definitions etc
defined in a module are to be made available to the Useing routine.

2. Discussion of the use of Interface Blocks:

Introduction

Explicit interface blocks are required between f90 routines if optional or keyword arguments
are to be used. They also allow the compiler to check that the type, shape and number of
arguments specified in the CALL are the same as those specified in the subprogram itself. In
addition some compilers (e.g. the Cray f90 compiler) use the presence of an interface block in
order to determine if the subprogram being called is written in f90 (this alters how array
information is passed to the subroutine). Thus, in general it is desirable to provide explicit
interface blocks between f90 routines.There are several ways to do this, each of which has
implications for program design; code management; and even configuration control. The three
main options are discussed in the following sections:

Option I: Explicitly Coded Interface Blocks

Interface blocks may be explicitly written into the calling routine, essentially by copying the
argument list declaration section from the called routine. This direct approach has, however,
some disadvantages. Firstly, it creates an undesirable increase in the work required to maintain
the calling routine, as if the argument list of the called routine changes the Interface block must
be updated as well as the CALL. Further, there is no guarantee that the Interface block in the
calling routine is actually up to date and the same as the actual interface to the called routine.

Option II: Explicitly Coded Interface Blocks in a Module

Interface blocks for all routines in a package may be explicitly written into a module, and this
module used by all routines in the package. This has the advantage of having one routine to
examine to find the interface specification for all routines - which may be easier than
individually examining the source code for all called routines. However, an Interface block
must still be maintained in addition to the routine itself and CALLs to it, though a program or
e.g. a unix script could be written to automatically generate the module containing the interface
blocks.

Option III: Automatic Interface Blocks

Fortran 90 compilers can automatically provide explicit interface blocks between routines
following a Contains statement. The interface blocks are also supplied to any routine Useing
the module. Thus, it is possible to design a system where no Interface blocks are actually coded
and yet explicit interface blocks are provided between all routines by the compiler. One way to
do this would be to 'modularise' the code at the f90 module level, i.e. to place related code
together in one module after the Contains statement. Routine a, in module A calling routine b
in module B would then only have to Use module B to be automatically provided with an
explicit interface to routine b. Obviously if routine b was in module a instead then no Use

-9-

would be required. One consequence of this approach is that a module and all the routines
contained within it make up a single compilation unit. This may be a disadvantage if modules
are large or if each module in a package contains routines which Use many other modules
within the package (in which case changing one routine in one module would necessitate the
recompilation of virtually the entire package). On the other hand the number of compilation
units is greatly reduced, simplifying the compilation and configuration control systems.

Conclusion

Options II) and III) both provide workable solutions to the problem of explicit interface blocks.
Option III is probably preferable as the compiler does the work of providing the interface
blocks, reducing programming overheads, and at the same time guaranteeing that the interface
blocks used are correct. Which ever option is chosen will have significant impact on code
management and configuration control as well as program design.

3. Array notation should be used whenever possible. This should help optimization and will
reduce the number of lines of code required. To improve readability show the array's shape in
brackets, e.g.:

1dArrayA(:) = 1dArrayB(:) + 1dArrayC(:)

2dArray(:, :) = scalar * Another2dArray(:, :)

4. When accessing subsections of arrays, for example in finite difference equations, do so by
using the triplet notation on the full array, e.g.:

 2dArray(:, 2:len2) = scalar &
 * (Another2dArray(:, 1:len2 -1) &
 - Another2dArray(:, 2:len2) &
)

5. Always name 'program units' and always use the End program; End subroutine; End interface;
End module; etc constructs, again specifying the name of the 'program unit'.

6. Use >, >=, ==, <, <=, /= instead of .gt., .ge., .eq., .lt., .le., .ne. in logical comparisons. The new
syntax, being closer to standard mathematical notation, should be clearer.

7. Don't put multiple statements on one line: this will reduce code readability.

8. Variable declarations: it would improve understandability if we all adopt the same conventions
for declaring variables as Fortran 90 offers many different syntaxes to achieve the same result.

• Don't use the DIMENSION statement or attribute: declare the shape and size of arrays
inside brackets after the variable name on the declaration statement.

• Always use the :: notation, even if their are no attributes.

• Declare the length of a character variable using the (len =) syntax.

9. We recommend against the use of recursive routines on efficiency grounds (they tend to be
inefficient in their use of cpu and memory).

10. It is recommended that new operators be defined rather than overload existing ones. This will
more clearly document what is going on and should avoid degrading code readability or
maintainability.

-10-

11. To improve portability between 32 and 64 bit platforms, it is extremely useful to make use of
kinds to obtain the required numerical precision and range. A module should be written to
define parameters corresponding to each required kind, for example:

 Integer, parameter :: single & ! single precision kind.
 = selected_real_kind(6,50)
 Integer, parameter :: double & ! double precision kind.
 = selected_real_kind(12,150)

This module can then be Used in every routine allowing all variables declared with an
appropriate kind e.g.

 Real(single), pointer :: geopotential(:,:,:) ! Geopotential height
fields

Enforcing These Standards
It is obviously important to ensure that these standards are adhered to - particularly that the
documentation is kept up to date with the software; and that the software is written in as portable a
manner as possible. If these standards are not adhered to exchangeability of the code will suffer. It may
be that software tools, such as QA fortran, could be tailored to test for compliancy to these standards.
This needs investigation.

One option would be to set up a central database for exchangeable code and its external
documentation. The acceptance criteria would be that the standards set out in this document are met.
This would of course require funding to provide hardware, software and personnel to maintain the
data base...

At the other extreme each centre could adopt it's own enforcement strategy, and distribute lists of it's
own exchangeable software to the other centres...

The best solution may well be to design a distributed system making use of Mosaic and internet.

References
Kalnay et al. (1989) "Rules for Interchange of Physical Parametrizations" Bull. A.M.S., 70 No. 6, p
620.

Appendix A: Modification History:
23/3/94: Draft Version 0.1 Phillip Andrews (UKMO)
22/4/94: Draft Version 0.2 Phillip Andrews (UKMO)
7/6/94: Draft Version 0.3 Phillip Andrews (UKMO)
31/7/94: Draft Version 0.4 Phillip Andrews (UKMO)
29/9/94: Draft Version 0.5 Phillip Andrews (UKMO)
14/10/94: Draft Version 0.6 Phillip Andrews (UKMO)

Renumbered Version 1.0

20/6/95: Version 1.1 Phillip Andrews (UKMO)

-11-

Appendix B: Standard Headers
The standard headers are presented in this appendix. They are written as templates. Text inside < >
brackets must be replaced with appropriate text by the user.

Program Header

 !+ <A one line description of this program>
 !
 Program <NameOfProgram>

 ! Description:
 ! <Say what this program does>
 !
 ! Method:
 ! <Say how it does it: include references to external documentation>
 ! <If this routine is divided into sections, be brief here,
 ! and put Method comments at the start of each section>
 !
 ! Input files:
 ! <Describe these, and say in which routine they are read>

 ! Output files:
 ! <Describe these, and say in which routine they are written>

 ! Current Code Owner: <Name of person responsible for this code>

 ! History:
 ! Version Date Comment
 ! ------- ---- -------
 ! <version> <date> Original code. <Your name>

 ! Code Description:
 ! Language: Fortran 90.
 ! Software Standards: "European Standards for Writing and
 ! Documenting Exchangeable Fortran 90 Code".

 ! Declarations:

 ! Modules used:

 Use, Only : &
 ! Imported Type Definitions:

 ! Imported Parameters:

 ! Imported Scalar Variables with intent (in):

 ! Imported Scalar Variables with intent (out):

 ! Imported Array Variables with intent (in):

 ! Imported Array Variables with intent (out):

 ! Imported Routines:

 ! <Repeat from Use for each module...>

 Implicit None

 ! Include statements
 ! Declarations must be of the form:

-12-

 ! <type> <VariableName> ! Description/ purpose of variable

 ! Local parameters:

 ! Local scalars:

 ! Local arrays:

 !- End of header ---

Subroutine header

 !+ <A one line description of this subroutine>
 !
 Subroutine <SubroutineName> &
 !
 (<InputArguments, inoutArguments, OutputArguments>)

 ! Description:
 ! <Say what this routine does>
 !
 ! Method:
 ! <Say how it does it: include references to external documentation>
 ! <If this routine is divided into sections, be brief here,
 ! and put Method comments at the start of each section>
 !
 ! Current Code Owner: <Name of person responsible for this code>
 !
 ! History:
 ! Version Date Comment
 ! ------- ---- -------
 ! <version> <date> Original code. <Your name>
 !
 ! Code Description:
 ! Language: Fortran 90.
 ! Software Standards: "European Standards for Writing and
 ! Documenting Exchangeable Fortran 90 Code".
 !
 ! Declarations:
 ! Modules used:

 Use, Only : &
 ! Imported Type Definitions:

 ! Imported Parameters:

 ! Imported Scalar Variables with intent (in):

 ! Imported Scalar Variables with intent (out):

 ! Imported Array Variables with intent (in):

 ! Imported Array Variables with intent (out):

 ! Imported Routines:

 ! <Repeat from Use for each module...>

 Implicit None

 ! Include statements:
 ! Declarations must be of the form:
 ! <type> <VariableName> ! Description/ purpose of variable

-13-

 ! Subroutine arguments
 ! Scalar arguments with intent(in):

 ! Array arguments with intent(in):

 ! Scalar arguments with intent(inout):

 ! Array arguments with intent(inout):

 ! Scalar arguments with intent(out):

 ! Array arguments with intent(out):

 ! Local parameters:

 ! Local scalars:

 ! Local arrays:

 !- End of header ---

Function header

 !+ <A one line description of this function>
 !
 Function <FunctionName> &
 (<InputArguments>) &
 Result (<ResultName>) ! The use of result is recommended
 ! but is not compulsory.

 ! Description:
 ! <Say what this function does>
 !
 ! Method:
 ! <Say how it does it: include references to external documentation>
 ! <If this routine is divided into sections, be brief here,
 ! and put Method comments at the start of each section>
 !
 ! Current Code Owner: <Name of person responsible for this code>
 !
 ! History:
 ! Version Date Comment
 ! ------- ---- -------
 ! <version> <date> Original code. <Your name>
 !
 ! Code Description:
 ! Language: Fortran 90.
 ! Software Standards: "European Standards for Writing and
 ! Documenting Exchangeable Fortran 90 Code".
 !
 ! Declarations:
 ! Modules used:

 Use, Only : &
 ! Imported Type Definitions:

 ! Imported Parameters:

 ! Imported Scalar Variables with intent (in):

 ! Imported Scalar Variables with intent (out):

-14-

 ! Imported Array Variables with intent (in):

 ! Imported Array Variables with intent (out):

 ! Imported Routines:

 ! <Repeat from Use for each module...>

 Implicit None

 ! Declarations must be of the form:
 ! <type> <VariableName> ! Description/ purpose of variable

 ! Include statements:

 ! Function arguments
 ! Scalar arguments with intent(in):

 ! Array arguments with intent(in):

 ! Local parameters:

 ! Local scalars:

 ! Local arrays:

 !- End of header --

Module header

 !+ <A one line description of this module>
 !
 Module <ModuleName>

 !
 ! Description:
 ! <Say what this module is for>
 !
 ! Current Code Owner: <Name of person responsible for this code>
 !
 ! History:
 !
 ! Version Date Comment
 ! ------- ---- -------
 ! <version> <date> Original code. <Your name>
 !
 ! Code Description:
 ! Language: Fortran 90.
 ! Software Standards: "European Standards for Writing and
 ! Documenting Exchangeable Fortran 90 Code".
 !
 ! Modules used:
 !
 Use, only : &
 ! Imported Type Definitions:

 ! Imported Parameters:

 ! Imported Scalar Variables with intent (in):

 ! Imported Scalar Variables with intent (out):

 ! Imported Array Variables with intent (in):

-15-

 ! Imported Array Variables with intent (out):

 ! Imported Routines:

 ! <Repeat from Use for each module...>

 ! Declarations must be of the form:
 ! <type> <VariableName> ! Description/ purpose of variable

 Imlicit none
 ! Global (i.e. public) Declarations:
 ! Global Type Definitions:

 ! Global Parameters:

 ! Global Scalars:

 ! Global Arrays:

 ! Local (i.e. private) Declarations:
 ! Local Type Definitions:

 ! Local Parameters:

 ! Local Scalars:

 ! Local Arrays:

 ! Operator definitions:
 ! Define new operators or overload existing ones.

 Contains
 ! Define procedures contained in this module.

 End module <ModuleName>

 !- End of module header

Appendix C: Examples

A VAR subroutine

This example subroutine has been taken from the UKMO's variational assimilation code. Some
additional style rules have been applied such as placing one argument per line and commenting the
argument with its intent.

 !+ Allocates and calculates the LS field Vtheta
 Subroutine Var_LSVtheta &
 (LocalFS, & ! in
 LS) ! inout

 ! Description:
 ! Allocates and calculates the linearization state derived field Vtheta:
 ! i.e. the virtual potential temperature.
 !
 ! Method:
 ! See UMDP 101 section 3.1.3.
 !
 ! Owner: Phil Andrews
 !
 ! History:

-16-

 ! Version Date Comment
 ! ------- ---- -------
 ! 0.1 01/09/94 Original code. Phil Andrews
 ! 0.2 26/10/94 Changed references from theta to thetaL and corrected
 ! 0.2 the calculation of Vtheta. Mike Thurlow.
 ! 0.3 07/02/95 Test of FieldStatus added. Phil Andrews.
 ! 1.4 11/05/95 Tracing added. JB
 !
 ! Code Description:
 ! Language: Fortran 90.
 ! Software Standards: "European Standards for Writing and
 ! Documenting Exchangeable Fortran 90 Code".
 !
 ! Parent module: VarMod_LS
 !
 ! Declarations:

 ! Modules used:
 Use VarMod_PFInfo, only : &
 ! Imported routines:
 Var_DeallocateModel, &

 ! Imported Type Definitions:
 ModelDump_type, & ! Stores LS PF or Adj states.
 ModelDumpHeader_type, & ! Structures use within
 Header_type, & ! ModelDump_type
 XYgrid_type, & ! ditto
 Zgrid_type, & ! ditto

 ! Imported Parameters:
 FieldStatus_absent ! FieldStatus code for absent

 Use VarMod_Constants, only : &
 ! Imported Parameters:
 InvGasRatioMinusOne

 Use VarMod_Trace, only : &
 ! Imported routines:
 Var_TraceEntry, &
 Var_Trace, &
 Var_TraceExit, &

 ! Imported scalars:
 UseTrace, &
 TraceNameLen

 Implicit none

 !* Subroutine arguments
 ! Scalar arguments with intent(in):
 Integer, intent(in) :: LocalFS ! value to use for FieldStatus

 ! Scalar arguments with intent(inout):
 Type (ModelDump_type), intent(inout) & ! linearization state
 :: LS

 !* End of Subroutine arguments

 ! Local parameters:
 Character (len=TraceNameLen), parameter &
 :: RoutineName = "Var_LSVtheta"

 ! Local scalars:
 Integer :: qlevels ! Number of q levels
 Integer :: Tlevels ! Number of temperature levels

-17-

 !- End of header --

 If (LS % header % Vtheta % FieldStatus == FieldStatus_absent) then

 !---
 ![1.0] Initialize: allocate space, calculate required fields etc...
 !---
 If (UseTrace) call Var_TraceEntry(RoutineName)

 qlevels = LS % header % qT % z % TopLev
 Tlevels = LS % header % thetaL % z % TopLev

 ! Allocate LS % Vtheta:
 Allocate (LS % Vtheta &
 (1:LS % header % thetaL % x % len, &
 1:LS % header % thetaL % y % len, &
 1:LS % header % thetaL % z % TopLev &
))

 ! Set header values for LS % Vtheta:
 LS % header % Vtheta = LS % header % thetaL
 LS % header % Vtheta % FieldStatus = LocalFS

 ! Obtain derived LS fields as necessary:
 Call Var_LSqc &
 (LocalFS +1, & ! in
 LS) ! inout

 Call Var_LStheta &
 (LocalFS +1, & ! in
 LS) ! inout

 !---
 ![2.0] Calculate LS % Vtheta:
 !---
 ! lowest to top wet level:
 LS % Vtheta(:,:,1:qlevels) = LS % theta(:,:,1:qlevels) &
 * (1.0 &
 + (InvGasRatioMinusOne &
 * (LS % qT(:,:,:) - LS % qc(:,:,:)) &
))

 ! Top wet level +1 to top dry level:
 LS % Vtheta(:,:,qlevels+1:Tlevels) = LS % thetaL(:,:,qlevels +1:Tlevels)

 ! Tidy up:
 Call Var_DeallocateModel &
 (LocalFS +1, & ! in
 LS) ! inout

 ! That's it!
 If (UseTrace) call Var_TraceExit(RoutineName)

 End if
 End subroutine Var_LSVtheta

-18-

Operators

The following program demonstrates how new operators can be defined in Fortran 90. It also shows
how to extend the existing operators and the assignment operation.

 !+ Extend assignment and + operators, & define two new ops
 !
 Module Operators
 !
 ! Description:
 !
 ! Module to extend the assignment operation so that it will
 ! convert characters to an integer, extend the + operator to
 ! add logical values, and define two new operators.
 !
 ! Current Code Owner: A N Other
 !
 ! History:
 ! Version Date Comment
 ! ------- ------ -------
 ! 1.0 5/5/95 Original code. (A N Other)
 !
 ! Code Description:
 ! Language: Fortran 90.
 !
 ! The procedure named must be a subroutine with one
 ! intent(OUT) argument and one intent(in) argument.

 Implicit none

 ! Override operators:
 Interface assignment(=)
 Module procedure Chars_to_Integer

 End interface

 ! Similarly the next interface will arrange for Add_Logicals
 ! to be called if two logical values are added together. The
 ! procedure named must be a function with two intent(in)
 ! arguments. The result of the addition is the result of the
 ! function.

 Interface operator(+)
 Module procedure Add_Logicals

 End interface

 ! Define new operators:

 ! This creates a new operator .Half. It is a unary operator,
 ! because Divide_By_Two only takes one argument.

 Interface operator(.Half.)
 Module procedure Divide_By_Two

 End interface

 ! This creates a new operator .JPlusKSq. It is a binary
 ! operator, because J_Plus_K_Squared takes two arguments.

 Interface operator(.JPlusKSq.)

-19-

 Module procedure J_Plus_K_Squared

 End interface

 Contains

 ! Define procedures contained in this module

 subroutine Chars_to_Integer(int, int_as_chars)

 ! Subroutine to convert a character string containing
 ! digits to an integer.

 Character(len=5), intent(in) :: int_as_chars
 Integer, intent(OUT) :: int

 Read (int_as_chars, FMT = '(I5)') int

 End subroutine Chars_to_Integer

 Function Add_Logicals(a, b) result(c)

 ! Description:
 ! Function to implement addition of logical values as an
 ! OR operation.

 Logical, intent(in) :: a
 Logical, intent(in) :: b
 Logical :: c

 c = a .OR. b

 End function Add_Logicals

 Function Divide_By_Two(a) result(b)
 Integer, intent(in) :: a
 Integer :: b

 b = a / 2

 End function Divide_By_Two

 Function J_Plus_K_Squared(j, k) result(l)
 Integer, intent(in) :: j
 Integer, intent(in) :: k
 Integer :: l

 l = (j + k) * (j + k)

 End function J_Plus_K_Squared
 End module Operators

 !- End of module header
 !+ Test program for operator module
 !
 Program Try_Operators

 ! Description:
 ! Program to test the operators defined in the module
 ! Operators
 !
 ! Current Code Owner: A N Other
 ! History:
 ! Version Date Comment
 ! ------- ------ -------

-20-

 ! 1.0 5/5/95 Original code. (A N Other)
 !
 ! Code Description:
 ! Language: Fortran 90.

 ! Modules used:

 Use Operators

 Implicit none

 ! Local scalars:
 Character(len=5) :: string5 = '-1234' ! Char. to integer

 Integer :: i_value = 99999 ! and half operator
 Integer :: half_value ! test variables.
 Integer :: n ! Test variables
 Integer :: l = 4 ! for add & square
 Integer :: m = 8 ! operation.

 Logical :: x = .false. ! Test variables
 Logical :: y = .true. ! for logical
 Logical :: z = .false. ! addition ops.

 !- End of header

 i_value = string5 ! Convert from a string to an integer.
 z = x + y ! Add together some logicals.

 Print *, string5, i_value, x, y, z

 half_value = .Half. i_value ! Use user def unary operator
 n = l .JPlusKSq. m ! Use user def binary operator

 Print *, i_value, half_value, l, m, n

 End program Try_Operators

Generic Functions

This program shows how to define a generic function (one which is defined for arguments of more
than one type). It also illustrates how explicit interfaces may be required when using subroutines or
functions, and how these are provided automatically if the subroutines or functions are placed in a
module.

 !+ Generic function to return a cube of a number
 !
 Module Generic_Cube
 !
 ! Description:
 ! Module to define a generic function called Cube which
 ! returns the cube of a number. The function is defined for
 ! both integer and real arguments so, for example, Cube(2)
 ! and Cube(4.263) will both work.
 !
 ! Current Code Owner: A N Other
 !
 ! History:
 ! Version Date Comment
 ! ------- ------ -------

-21-

 ! 1.0 5/5/95 Original code. (A N Other)
 !
 ! Code Description:
 ! Language: Fortran 90.

 Implicit none

 ! The interface says that when the generic function Cube is
 ! used the compiler should either call R_Cube or I_Cube
 ! depending on the type of the argument.

 Interface Cube
 Module procedure R_Cube, I_Cube

 End interface

 Contains

 Function R_Cube(value) result(res)! Compiler knows to call
 Real :: value ! this with real args
 Real :: res ! because 'value' is

 a = value * value * value ! declared as Real.

 End function R_Cube

 Function I_Cube(value) result(res)! Compiler knows to call
 Integer :: value ! this with integer args
 Integer :: res ! because 'value' is

 a = value * value * value ! declared as Integer.

 End function I_Cube
 End module Generic_Cube

 !- End of module header

 !+ Print the cube roots numbers.
 !
 Program Cubes

 ! Description:
 ! Program to print the cubes and cube roots of some numbers.
 !
 ! Current Code Owner: A N Other
 !
 ! History:
 ! Version Date Comment
 ! ------- ------ -------
 ! 1.0 5/5/95 Original code. (A N Other)
 !
 ! Code Description:
 ! Language: Fortran 90.

 Use Generic_Cube ! Make the generic function Cube
 ! available in this program
 Implicit none

 ! Local scalars:
 Integer :: i = 8 ! Integer test value

-22-

 Real :: a = 8.01 ! Real test value

 ! Interface to define a generic function Cube_Root which
 ! returns the cube root of an integer or real number.
 ! Because the functions R_Cube_Root and I_Cube_Root are not
 ! in a module, the compiler doesn't know the types of their
 ! arguments when it compiles the main program. This means we
 ! have to give them explicitly in the interface, which is
 ! laborious and error prone. The moral of the tale is - use
 ! a module!

 Interface Cube_Root
 Function R_Cube_Root(value) result(res)
 Real :: value
 Real :: res

 End function R_Cube_Root

 Function I_Cube_Root(value) result(res)
 Integer :: value
 Integer :: res

 End function I_Cube_Root
 End interface

 ! Print the cubes and cube roots of some numbers using the
 ! Cube and Cube_Root generic functions.

 Write (*, "(3(A, I9.3))") "i: ", i, " Cube: ", Cube(i), &
 " Cube root: ", Cube_Root(i)
 Write (*, "(3(A, F9.4))") "a: ", a, " Cube: ", Cube(a), &
 " Cube root: ", Cube_Root(a)

 End program Cubes

 !+ Return the cube root of a real number
 !
 Function R_Cube_Root(value) result(res)

 ! Description:
 ! Function returning the cube root of a real number.
 !
 ! Current Code Owner: A N Other
 !
 ! History:
 ! Version Date Comment
 ! ------- ------ -------
 ! 1.0 5/5/95 Original code. (A N Other)
 !
 ! Code Description:
 ! Language: Fortran 90.

 Implicit none

 ! Scalar arguments with intent(in)
 Real :: value ! Input value

 ! Local scalars
 Real :: res ! Result

 !- End of header

 res = value ** (1.0 / 3.0)

-23-

 End function R_Cube_Root

 !+ Return the cube root of an integer
 !
 Function I_Cube_Root(value) result(res)

 ! Description.
 ! Function returning the integer part of the cube root of
 ! its integer argument.
 !
 ! Current Code Owner: A N Other
 !
 ! History:
 ! Version Date Comment
 ! ------- ------ -------
 ! 1.0 5/5/95 Original code. (A N Other)
 !
 ! Code Description:
 ! Language: Fortran 90.

 Implicit none

 ! Scalar arguments with intent(in)
 Integer :: value ! Input value

 ! Local scalars
 Integer :: res ! Result

 !- End of header

 res = int(Real(value) ** (1.0 / 3.0))

 End function I_Cube_Root

Last updated: 23 October 1996 by cpjones@meto.gov.uk | © Crown Copyright 1996

