Integrated simulation of the terrestrial water cycle with the coupled Terrestrial Systems Modelling Platform (TSMP)

(Evolution of 2018 to 2020 European terrestrial water resources anomalies from coupled COSMO-CLM-ParFlow (TSMP) forecast simulations)

2021-09-22 | K. Goergen^{1,2}, C. Hartick^{1,2}, C. Furusho-Percot^{1,2}, M. lakunin^{1,2}, N. Wagner^{1,2}, S. Kollet^{1,2}

¹Institute of Bio-Geosciences (IBG-3, Agrosphere), Research Centre Jülich, Jülich, Germany

²Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany

The terrestrial system

Our focus: Terrestrial water cycle and groundwater-to-atmosphere (G2A) interactions and feedbacks

- Complex interactions and feedbacks between various subsystems of the coupled geoecosystem, many drivers
- Linkages through energy, mass and momentum transfers
- Multiple spatio-temporal scales
- Anthropogenic physical system changes modify land surface and ecosystem processes and services with many socioeconomic impacts

Motivation

Intensification of the hydrological cycle under climate change

- Global (climate, land use) change has an impact on water as a resource, its sustainable use, and affects water security
- Better understanding and prediction of (increasing) extreme hydroclimatic events (e.g., droughts, heatwaves) and related feedbacks for informed adaptation (e.g., irrigation) or mitigation options, but:
 - Observations: Scarce/inconsistent at the European scale
 - Climate models: Often simplified groundwater representation
 - Hydrological models: Often simplified surface-subsurface interactions and neglect two-way feedbacks with the atmosphere: terrestrial water cycle not closed
- In addition: **Human water use** has multiple local and non-local (climatic) effects (groundwater recharge/storage, discharge, ET/P recycling, etc.) ... not addressed today

Some research questions and goals

Assess the groundwater-terrestrial system-atmosphere interactions and feedbacks

- What are drivers of hydroclimatic extremes (droughts, heatwaves) in the context of land-atmosphere coupling?
 How does groundwater alleviate extremes? (processes)
- 2. Provide a physically consistent groundwater-toatmosphere climatology as a basis to assess how extreme weather events and climate change affect groundwater (application)
- 3. What is the **impact of extreme hydrometeorological conditions** (e.g., drought of 2018) on **water resources** in Europe? (*resources*)

Need for integrated groundwater-to-atmosphere
simulations – the coupled land surface/subsurface and
atmospheric water and energy cycles are impacted

Courtesy J. Keune (2018), Uni Ghent

Terrestrial Systems Modelling Platform (TSMP) model system

Closure of the terrestrial water and energy cycle from groundwater to the atmosphere

Shrestha et al. (2014, Mon Weather Rev); Gasper et al. (2014, GMD); Kurtz et al. (2016, GMD); Burstedde et al. (2018, Comput Geosc); Hokkanen et al. (2021, Comput Geosc)

- A scale-consistent highly modular fully integrated soilvegetation-atmosphere numerical modelling system using COSMO, Community Land Model and ParFlow
- Physically-based representation of transport processes of mass, energy and momentum across scales down to sub-km resolutions, explicit feedbacks between compartments (focus: terrestrial hydrological cycle), including irrigation and pumping
- Optimized for latest massively parallel HPC systems;
 Parallel Data Assimilation Framework (TSMP-PDAF)

TSMP pan-European model setup

In line with the WCRP Coordinated Regional Downscaling Experiment (CORDEX) project

• CORDEX EUR-11 Gutowski et al. (2016, GMD)

Resolution: 0.11° (about 12km), 436 x 424 gridpoints

Vertical levels: 50 (COSMO), 10 (to -3m) (CLM), 15 (to -60m) (ParFlow)

- Time steps: 60s (COSMO), 900s (CLM), 900s (ParFlow)

• Input data Keune et al. (2016, JGR)

Atmosphere: ERA-Interim

Land surface: MODIS data (4 plant functional types / grid cell)

Subsurface: FAO soil types (and Gleeson/BGR data base)

Experiments

- 1. Sensitivity studies, year 2003 (European heat wave) 1D vs 3D groundwater physics Keune et al. (2016, JGR)
- 2. EURO-CORDEX evaluation: 1989-1995 spinup, 1996-2019 analysis Furusho-Percot et al. (2019, Sc Data) + Hartick et al. (2021, WRR)
- 3. Probabilistic water resources prediction, heatwave and drought impacts, 3 water years Hartick et al. (2021, WRR)

A "pristine" groundwater climatology, no human impacts

ERA-Interim driven TSMP evaluation run (with 3D ParFlow) 1996/01 to 2019/08

- Typical large scale patterns (coastal plains, mountains, etc.)
- River networks start to evolve
- Redistribution of surface and groundwater in continuum approach
- Surface runoff and subsurface hydrodynamics are linked
- Physically consistent with atmospheric forcing

Basis for assessment of weather and regional climate change impacts on groundwater

Towards actionable information

TSMP mean water table depth, 1996/Sep to 2018/Aug

Furusho-Percot et al. (2019, Sc Data)

Well represented interannual variability in TSMP evaluation run

TSMP seasonal precipitation and air temperature anomalies 1996-2018 wrt E-OBS v19 and ERA-Interim

Representation of the terrestrial system without human water use (e.g., Keune et al., 2018, GRL)

Water storage variability over Prudence regions reproduced

TSMP monthly total column water storage, deviation from mean, 1996-2019 wrt GRACE-REC dataset

Hydroclimatic extremes

Monthly column water storage anomalies 1996/Jan to 2019/Aug from TSMP groundwater climatology

Main drought and water scarcity events are captured
Drought as strong anomaly in subsurface water storage wrt climatology

Hartick et al. (2021, WRR)

Hydroclimatic extremes

Subsurface monthly water storage anomalies, s, from TSMP groundwater climatology

Interannual probabilistic subsurface water assessment, method

What is the impact of meteorological conditions on water resources in subsequent water years?

- Approach
 - Use last day of the water year as initial condition: e.g., 2018-08-31
 - Simulate 2018/19 water year, with atmospheric conditions from all preceding years (climatologic ensemble) to produce a "probabilistic" forecast, accounting for uncertainty and natural variability
 - Inspection of forecasted probabilities of water storage anomalies
- Rationale: Uncertain atmospheric forcing, but memory effects due to slow dynamics in gw-soil-vegetation system: initial value problem

Extraction of drought years 2011, 2018, 2019

Hindsight assessment of water year 2018/Sep-2019/Aug, ME

Impact of memory effects of subsurface hydrodynamics on the evolution of water storage anomalies

- Heat wave with positive temperature and negative precipitation anomalies
- Evolution of dry (negative) subsurface water storage anomaly, s
- Stabilisation of s towards August 2019,
 s_mean=-15mm, s_SD=22mm
- Reduction of dry anomaly with most ensemble members, but Weibull probability estimation P~70% for continuing water deficit (P_pr~50%)
- Severe drought 2018: EVAL s=-28mm 08/2019 → continuously dry conditions

Hartick et al. (2021, WRR)

Hindsight assessment of water year 2018/Sep-2019/Aug, ME

Impact of memory effects of subsurface hydrodynamics on the evolution of water storage anomalies

What is the impact of the initial condition, memory effect?

Reverse ensemble assessment

- 2nd ensemble (2): All available initial conditions driven with atmospheric forcing of 2018/19 (EVAL), ParFlow/CLM only
- Convergence of ensemble members; spread reduces by 55%

Relative influence of initial condition vs atmospheric forcing on predictability? -> anomaly strength

Hartick et al. (2021, WRR)

Ensembles error ratios of s

- MAE of each ensemble to EVAL
 RMSE of each ensemble
- error ratio = error of assessment ens. (1) / error of reverse assessment ens. (2)
- Initial condition more important than forcing

Summary and conclusions

Bridge gap between hydrology and meteorology; exploration of feedback pathways and machanisms

- COSMO+CLM+ParFlow (TSMP) allows to simulate states and fluxes of the terrestrial water and energy cycle
- Shallow water tables simulated with a physics-based gw model can alleviate temperature extremes by 1°C
- Groundwater processes may play a crucial role for climate and the evolution of heatwaves and droughts
- "Natural" **groundwater climatology** consistent with the atmospheric forcing generated by TSMP for **Europe**
- Good representation of spatio-temporal variability of interannual anomalies wrt observations and reanalysis
- Baseline dataset to assess hydro-climatic extremes and the impact of human water use
- Water scarcity and droughts are detectable and predictable (towards real-world resources applications)
- Increased probability for water deficit in regions with strong previous year deficit, predictability up 8 months
- Models need to account for long-term memory effects in terrestrial water cycle over large spatial scales

Ongoing and outlook: Longer EVAL run w/ ERA-5; TSMP in CLMcom EURO-CORDEX CMIP6 downscaling

Our concept of a fully coupled terrestrial monitoring system

TSMP-M(onitoring)

Daily deterministic simulations, schematic workflow at Jülich Supercomputing Centre

- 1. 10-days European forecast driven by ECMWF-forecast;
- DWD (German Meteorological Service)
 precipitation radar data used for a short 24
 hours TSMP simulation that is aimed on
 updating soil moisture data in the model
 ("correction" simulation);
- 3. 10-days forecast over NRW domain based on EU-forecast and correction simulation.

Outputs available at:

www.terrsysmp.org/forecast/index.html

TSMP-M(onitoring)

https://www.terrsysmp.org/forecast/index.html

Main references

Burstedde, C., Fonseca, J.A. & Kollet, S. (2018), Enhancing speed and scalability of the ParFlow simulation code. Computational Geosciences 22: 347. https://doi.org/10.1007/s10596-017-9696-2.

Furusho-Percot, C., Goergen, K., Hartick, C., Kulkarni, K., Keune, J., & Kollet, S. (2019). Pan-European groundwater to atmosphere terrestrial systems climatology from a physically consistent simulation. Scientific Data, 6(320). doi:s41597-019-0328-7

Gasper, F., K. Goergen, P. Shrestha, M. Sulis, J. Rihani, M. Geimer, and S. Kollet (2014), Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q), Geoscientific Model Development, 7 (5), 2531–2543, doi:10.5194/gmd-7-2531-2014.

Hartick, C., Furusho-Percot, C., Goergen, K., & Kollet, S. (2021). An Interannual Probabilistic Assessment of Subsurface Water Storage Over Europe, using a Fully Coupled Terrestrial Model. Water Resources Research, 57, e2020WR027828. doi:10.1029/2020WR027828

Hokkanen, J., Kollet, S., Kraus, J., Herten, A., Hrywniak, M., & Pleiter, D. (2021). Leveraging HPC accelerator architectures with modern techniques — hydrologic modeling on GPUs with ParFlow. Computational Geosciences. doi:10.1007/s10596-021-10051-4

Keune, J., F. Gasper, K. Goergen, A. Hense, P. Shrestha, M. Sulis, and S. Kollet (2016), Studying the influence of groundwater representations on land surface-atmosphere feedbacks during the European heat wave in 2003, Journal of Geophysical Research: Atmospheres, 121 (22), 13,301–13,325, doi:10.1002/2016JD025426.

Keune, J., M. Sulis, S. Kollet, S. Siebert, and Y. Wada (2018), Human water use impacts on the strength of the continental sink for atmospheric water, Geophysical Research Letters, doi:10.1029/2018GL077621.

Kollet, S.; Gasper, F.; Brdar, S.; Goergen, K.; Hendricks-Franssen, H.-J.; Keune, J.; Kurtz, W.; Küll, V.; Pappenberger, F.; Poll, S.; Trömel, S.; Shrestha, P.; Simmer, C.; Sulis (2018), M. Introduction of an Experimental Terrestrial Forecasting/Monitoring System at Regional to Continental Scales Based on the Terrestrial Systems Modeling Platform (v1.1.0). Water, 10, 1697, doi:10.3390/w10111697.

Kurtz, W., He, G., Kollet, S. J., Maxwell, R. M., Vereecken, H., and Hendricks Franssen, H.-J. (2016), TerrSysMP–PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface–subsurface model, Geosci. Model Dev., 9, 1341–1360, https://doi.org/10.5194/gmd-9-1341-2016.

Shrestha, P., M. Sulis, M. Masbou, S. Kollet, and C. Simmer (2014), A scale-consistent Terrestrial Systems Modeling Platform based on COSMO, CLM and ParFlow, Monthly Weather Review, 142 (9), 3466–3483, doi:10.1175/MWR-D-14-00029.1.

