

Evaluation of a dynamical downscaling of ERA5 with COSMO-CLM for the North Sea at kilometer-scale resolution

Ruben Borgers Nicole Van Lipzig Johan Meyers

1

Research context

Research context

- Long-term characteristics and uncertainty of the wind climate are crucial and most valuable at a high spatio-temporal resolution.
- Farm density increases, so array- and cluster-scale wake deficits influence neighbouring wind farm arrays and clusters.

Research context

 Long-term characteristics and uncertainty of the wind climate are crucial and most valuable at a high spatio-temporal resolution.

• Farm density increases, so <u>array- and cluster-scale wake deficits</u> influence neighbouring wind farm arrays and clusters.

The approach

But why such a high spatial resolution?

The land-sea transition: better representation of the coastal regions in the domain, and by extension also the coastal gradients.

The windfarm parametrization: Take into account the subgrid-scale interactions

between wind turbines and the atmosphere (CCLM_wf).

Model validation

Scatterometer data

(ESA).

- ASCAT sensor on MetOp-satellites
- 12.5 or 25km spatial resolution
- (sub-)daily instantaneous 10m wind speed values
- Uncertainty on climatological mean: around 0.1 m/s

General model setup:

- Horizontal resolution: 2.8km (0.025°)
- Vertical resolution: 61 levels
- Hourly boundary updates from ERA5
- No spectral nudging

Parametrizations:

- Shallow convection scheme (reduced Tiedtke)
- 1D TKE-based diagnostic turbulence scheme (itype_turb = 3)
- No wind farm parametrization

Comparison of output with in-situ data:

- U,V every 10 min at [10m, 30m, 50m, 70m, 90m, 110m, 130m] above the surface (MSL above water)
- Shear-informed extrapolation of model output to sensor height using the power law relationship (HL = height level):

$$m{V}_{h_{sensor}} = m{V}_{h_{HL}} * \left(rac{h_{sensor}}{h_{HL}}
ight)^{lpha}$$
, with $lpha = rac{\ln \left(rac{V_{h_{HL+1}}}{V_{h_{HL}}}
ight)}{\ln \left(rac{h_{HL+1}}{h_{HL}}
ight)}$

10min nearest-gridbox values are compared to 10min averages from the measurement mast

Cabauw:

FINO3:

Difference in yearly mean (10m ws) (m/s) [CCLM - ASCAT]

Comparison with ASCAT

- 35% of grid boxes → element of [-0.1 m/s, +0.1 m/s]
- 72% of grid boxes → element of [-0.3 m/s, +0.3 m/s]

(Sub-)km scale use of CCLM_wf

Approach

- 01/01/2019 => 08/03/2019 CCLM2.8 intermediate run
 - Hourly BC update from ERA5
 - 2 months spin-up of soil state.
- 4 Nested simulations for 01/03 > 08/03 [250x250 cells]
 - Belgian coastal zone
 - Hourly BC update from CCLM2.8
 - Mainly westerly, south-westerly and southerly winds.

(Sub-)km scale use of CCLM(_wf)

First analysis

> Comparison of the nested simulations and the 2.8km nest run: TURBULENT KINETIC ENERGY

(Sub-)km scale use of CCLM(_wf)

First analysis

➤ Comparison of the nested simulations and the 2.8km nest run: WIND SPEED

(Sub-)km scale use of CCLM(_wf)

Thank you! Questions?

