Deutscher Wetterdienst Wetter und Klima aus einer Hand

Results of statistical downscaling of COSMO-CLM convection-permitting simulations with PCA-derived weather patterns

Michael Haller, Susanne Brienen, Stefan Krähenmann, Barbara Früh

- Convection-permitting simulations in Project "Network of Experts" \rightarrow
 - → Dynamical downscaling from 12 km to 2.8 km for Germany
- Statistical downscaling approach
 - → Methods
 - → Application to climate projection ensemble

Project "Network of Experts" (NoE)

- Network of several agencies in the frame of the German Federal Ministry of Transport and Digital Infrastructure (BMVI)
 - Integrates the knowledge and abilities available within the departmental research institutes
 - Datasets and analysis methods for observations and climate projections for Germany for the assessment of specific climate impacts on the transport infrastructure network
 - Local information of extreme events are essential for adaption strategies for traffic infrastructure
 - Convection-permitting simulations (CPS) in high resolution are performed
 - © DLR, 2013

Work concept in NoE

- Climate projections on high-resolution for Germany / Central Europe, based on EURO-CORDEX
- Test and apply statistical downscaling approach to EURO-CORDEX member for historical and future time periods
- Apply to EURO-CORDEX ensemble members to span a high-resolution data set of climate projections

Dynamical downscaling simulations

COSMO-CLM Version	COSMO 4.8 CLM 18 (INT2LM Version 1.19)			
Resolution	horizontal: 2.8 km		vertical: 50 layers	
Model domain	COSMO-DE plus eastern river catchments			
Climato sconario				
Time periods	1971–2005	Historical run		MIROC5 - CCLM
	1971–2000	Evaluation run		ERA-40/ERA- Interim
	2006–2100	Scenario run		MIROC5 - CCLM
	Focus time periods	"Near Future" (2031-2060)		MIROC5 - CCLM
		"Far Future" (2071-2100)		MIROC5 - CCLM
Relevant variables	Temperature, dew point temperature, precipitation, wind, pressure, radiation			

- → 461x481 grid points
- "COSMO-DE-plus"/GER-025: extended to the east to include river catchments
- → Horizontal grid: 0.025°

Dynamical downscaling: Temperature

DWD

COSMO-CLM CPS 2.8 km historical and scenario time periods

滃

- Climate data of NoE CPS runs are delivered to project partners
- → Analyses of climate impact on traffic infrastructure
 - Impact of storms on railway track sections
- CPS-Data set based on only one GCM-RCM model
- ➔ For quantification of uncertainties climate model ensemble needed

Statistical Downscaling

- Problem: Dynamical Downscaling technique takes much time and money
 - \rightarrow Building of CPS ensemble only possible for small domains and few models
- Our solution: Application of Statistical Downscaling technique
 - As Predictors serve Principal Component Analysis (PCA) derived weather patterns, taken from CPS high-resolution (HighRes) run

Statistical downscaling scheme

Krähenmann & Haller, in prep.

DWD

Statistical Downscaling

- Calculation of reduced climate model ensemble by method of Dalelane et al. (2018)
 - 6 out of 20 Members in RCP8.5ensemble
- LowRes data set: Bias-adjusted 12 km EURO-CORDEX data
- HighRes data set: evaluation run with COSMO-CLM with 2.8 km grid width
- Calculations done for area surrounded by red line
- Variables: temperature, precipitation

REMO

Statistical Downscaling

- Calculation of reduced climate model ensemble by method of Dalelane et al. (2018)
 - 6 out of 20 Members in RCP8.5ensemble
- LowRes data set: Bias-adjusted 12 km EURO-CORDEX data
- HighRes data set: evaluation run with COSMO-CLM with 2.8 km grid width
- Calculations done for area surrounded by red line
- Variables: temperature, precipitation

2

Oder

MPI-

WRF

REMO

12

Elbe

Statistical downscaling scheme: Example Deutscher Wetterdienst Wetter und Klima aus einer Hand

MPI-M-MPI-ESM-LR CLMcom-CCLM4-8-17 (tas, 1950-11-30)

End result

-15

MPI-M-MPI-ESM-LR CLMcom-CCLM4-8-17 (tas, 1950-11-30)

Statistical Downscaling: Results

➔ Ensemble changes of mean values of temperature and precipitation (2031-2060 to reference period 1971-2000)

Mean ensemble trend of mean temperature in K

Mean ensemble trend of mean annual precipitation in percent [%]

Statistical Downscaling: Results

 Ensemble changes of extreme values of precipitation (2031-2060 to reference period 1971-2000)

Mean ensemble relative change of number of days in percent [%]

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

6

Statistical Downscaling: Annual cycle

Statistical and dynamical downscaling

Deutscher Wetterdienst Wetter und Klima aus einer Hand

CCLM12 RCP8.5

DWD

Mean yearly precipitation at every grid point

- → Next phase of Network of Experts will start 2020
- \rightarrow Switch to ICON-CLM (on convection-permitting scale)
- \rightarrow New projections with very high time resolution for precipitation (5min)
- Extension of current analyses of the dynamically and statistically downscaled simulations
 - Some open questions to solve
 - Evaluation with hourly radar data
- COSMO-CLM CPS data set soon available on ESGF-node
 - https://esgf.dwd.de/

