

Scale dependency of heavy precipitation processes. Assessment of COSMO-CLM present climate simulations

<u>A. Caldas-Alvarez¹</u>, H. Feldmann¹, E. Lucio² and J. Pinto¹

¹ Karlsruhe Institute of Technology (KIT)

² Max-Planck Institute for Meteorology (MPI-M)

Regional Climate and Weather Hazards Institute of Meteorology and Climate Research – Department Troposphere Research (IMK-TRO)

www.kit.edu

Introduction

Due to the large damaging potential of heavy precipitation, there is great interest in high-resolution climate simulations

Added value of convection-permitting modelling (Prein et al., 2015, 2017; Ban, et al., 2018; Meredith et al., 2020)

- Larger extreme precipitation
- Improved structure
- No drizzle overestimation
- Improved diurnal cycle
- Scale-dependency of dynamic precipitation

processes (Barthlott and Hoose, 2015; Langhans et al., 2012)

- More intense convective updraughts
- Larger number of cells triggered
- Enhanced orographic triggering

Introduction

Due to the large damaging potential of heavy precipitation, there is great interest in high-resolution climate simulations

- Scale-dependency of thermodynamic precipitation processes (Knote et al., 2010; Langahns et al., 2012; Prein et al., 2013; Vanden-Broucke et al., 2019; Hoehneeger et al., 2015, 2019)
 - More T, MFC, KE variability
 - Improved average T2M
 - Negative soil-moisture atmosphere feedback
 - Better coastal winds
 - Moisture flux?
 - Surface moisture?
 - Equivalent Potential Temperature?
 - CAPE?
 - Surface fluxes?

What is the scale-dependency of precipitation thermodynamic processes in COSMO-CLM simulations of the present Climate?

Methodology

COSMO-CLM downscaled reanalyses at 25 km and 3 km

Principal Component Analysis

PCA transforms the data into a new space of less, uncorrelated dimensions, providing an estimation of the explained variability.

$$\Sigma = \alpha \cdot \lambda \cdot \alpha'$$

$$\Sigma = Variance array of x$$

$$x = Eigenvectors (orthogonal functions)$$

$$\lambda = Eigenvalues (variability)$$

$$\alpha' = \frac{1 \cdot x}{1 \cdot x} = \frac{1000}{1000}$$

$$\alpha' = \frac{1 \cdot x}{1 \cdot x} = \frac{1000}{1000}$$

$$\alpha' = \frac{1 \cdot x}{1000}$$

$$CCLM-3km (Winter, 2000-2015)$$

α

First precipitation variance mode and composites

We calculate differences (CCLM-25km – CCLM-3km) of timely averages with 440 and 337 days for model variables

Alberto Caldas-Alvarez - Scale dependency of heavy precipitation processes

First precipitation variance mode and composites

Alberto Caldas-Alvarez - Scale dependency of heavy precipitation processes

Atmospheric moisture

Integrated water vapour was systematically higher in 25 km compared to 3 km, especially at the lower free troposphere (850 – 500 hPa).

Surface specific humidity

Closer to the surface, we observe a north to south gradient, also seen for moisture between 1000 hPa and 850 hPa.

- Summer and Winter
- Related to precipitation differences over low terrain
- Related to CAPE differences

Instability and Equivalent Potential Temperature

Given the resolution differences in surface specific humidity, the studied EOFs also showed a strong gradient of CAPE differences

- CAPE differences related to precipitation differences
- θ_e^{850} is systematically larger in 25 km.
- Differences at the surface are more relevant than differences at the free troposphere

Soil-atmosphere Evaporation

CCLM-3km evaporates more moisture overland, CCLM-25 km evaporates more over water, systematically.

- The southerly flow pushes the moisture excess in CCLM-25km up the Avignon and Po Valleys
- All EOFs and both seasons
- Explain observed surface humidity and CAPE differences

Conclusions

- The scale-dependency of dynamic processes (intensified wind updrafts, orographic triggering) explains the larger precipitation intensities over complex orography
- The scale-dependency of thermodynamic processes (surface fluxes and CAPE) explains precipitation differences over low terrain
- Systematic wetter atmosphere and larger θ_e^{850} in 25 km
- North-south gradient of resolution differences for surface specific humidity and CAPE

Thank you for your attention

Alberto Caldas-Alvarez - Scale dependency of heavy precipitation processes