VHR-REA_IT dataset: a dynamical downscaling of ERA5 reanalysis at very fine resolution 2.2 km over Italy

M.Raffa, A.Reder , M. Adinolfi and P.Mercogliano

REgional Models and geo-Hydrological Impacts (REMHI) Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici, Caserta, Italy

CLM-ASSEMBLY 2021 Web conference September 23rd, 2021

Overview

- the HIGHLANDER project (<u>https://highlanderproject.eu/</u>)
- A new additional gridded dataset over Italy, labelled as VHR-REA_IT (Very High-Resolution REA nalysis for IT aly), derived from the dynamical downscaling of ERA5 reanalysis
 - **Experimental setup**
- **Evaluation:**
 - temperature and precipitation
 - **ETCCDI** Climate Indices •

Crop water requirements forecast

Soil erosion

for farming

Forest fires prediction

Animal welfare and land suitability

HIGHLANDER project

HIGHLANDER project will be able to develop new cutting-edge applications and services for supporting planning and decision-making when considering territorial resources and systems modifying under medium-term climate projections, including extreme events and related climate risks, e.g.:

- a smarter management of agriculture through • irrigation schedules, land capability for specific crops;
- the maintenance of animal and human wellbeing, looking at differences between rural and urban areas:
- an improved water management, considering sustainability of competing the uses (hydropower, domestic, agricultural, ecological);
- a better planning of landscape ecosystems and resources by considering shift in forest habitat suitability and changes in soil erosion potential.

Land suitability for vegetation

Human wellbeing in rural and urban areas

Water cycle and sustainability of competing uses

Soil erosion

Forest fires prediction

IoT for Animal wellbeing

Natural parks environmental management

Crop water requirements forecast

Animal welfare and land suitability for farming

CINECA

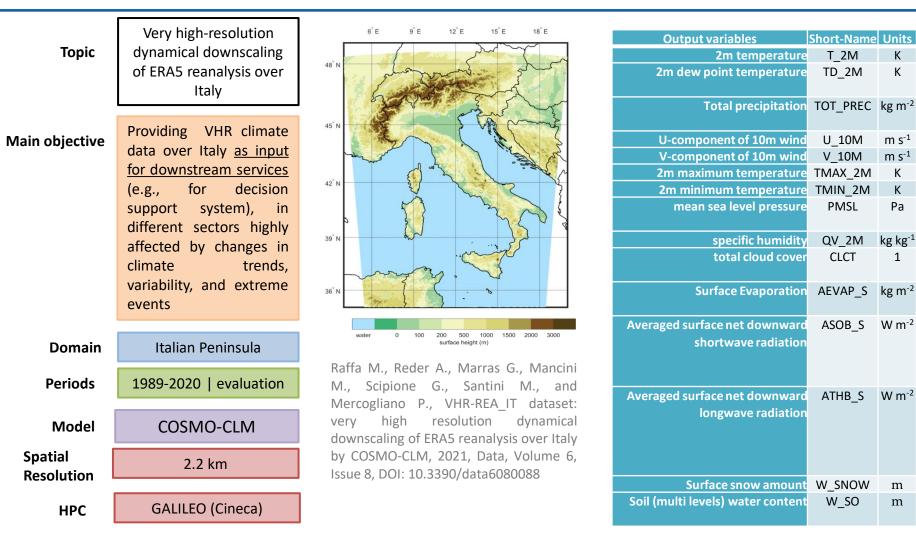
Consortiun

https://highlanderproject.eu/

Dynamical downscaling of ERA5

		Model	CCLM011	CCLM002-Nest	CCLM002-Direct	
Торіс	Sensitivity test for	Boundary forcing	ERA5-Reanalysis	CCLM011	ERA5-Reanalysis	
	dynamical downscaling	Horizontal resolution	0.11° (~12 km)	0.02° (~2.2 km)	0.02° (~2.2 km)	
	of ERA5 Reanalysis	Time step (s)	75 s	20 s	20 s	
		N° grid points	450 × 438	455 × 330	455 × 330	
	The assessment of downscaling exercise of ERA5 Reanalysis at ~2.2 km over Europe, to reproduce past	N° vertical levels	40	50	50	
		Radiation scheme	Ritter and Geleyn [48]	Ritter and Geleyn [48]	Ritter and Geleyn [48]	
		Convection scheme	Deep and shallow convection	Shallow convection based on	Shallow convection based on	
		convection scheme	based on Tiedtke [49]	Tiedtke [49]	Tiedtke [49]	
Main			Doms et al. [50]; Baldauf and	Doms et al. [50]; Baldauf and	Doms et al. [50]; Baldauf and	
objective		Microphysics scheme	Schulz [51]	Schulz [51]	Schulz [51]	
			TERRA-ML [50]	TERRA-ML [50] with TERRA-URB	TERRA-ML [50] with TERRA-URB	
	precipitation pattern	Land surface scheme		[42] parametrization	[42] parametrization	
		Land use	GLC2000 [52]	GLC2000 [52]	GLC2000 [52]	
Domain	Central Europe	Planetary boundary layer scheme	Mellor and Yamada [53]	Mellor and Yamada [53]	Mellor and Yamada [53]	
Domain		Lateral Boundary Condition (LBC)				
		update frequency	1 h	1 h	1 h	
Periods	2007-2011 evaluation		Temperature and moisture	Temperature and moisture	Temperature and moisture	
		Soil initialization	obtained by interpolation from	obtained by interpolation from	obtained by interpolation from	
Madal			ERA5-Reanalysis	CCLM011	ERA5-Reanalysis	
Model	COSMO-CLM		· · · · ·		,	
Spatial Resolution	2.2 km Central Europe 12 km EURO-Cordex domain		CCLM002 (~ 2.2 kr	DIRECT 1:15 resolution jump		
between	Reder A., Adinolfi M., o P. (2021). A Comparison One-Step and Two-Step trategy in the Dynamical	ERA5 (31km)				

2-STEP


1:3:6 resolution jump

CCLM011 (~ 12 km)

CCLM002 (~ 2.2 km)

Downscaling of Regional Climate Model COSMO-CLM at 2.2 km Driven by ERA5 Reanalysis. Atmosphere, 2021, 12, 260

VHR-REA_IT: experimental setup

m

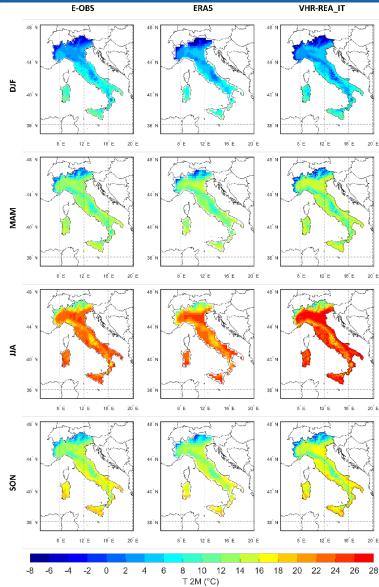
m

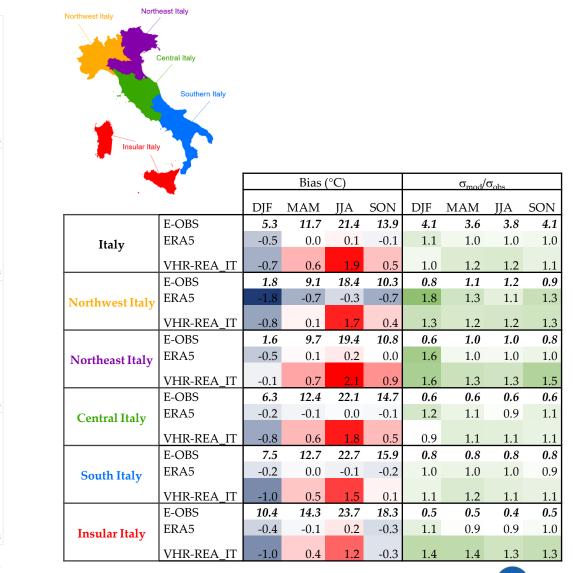
Κ

Κ

Κ

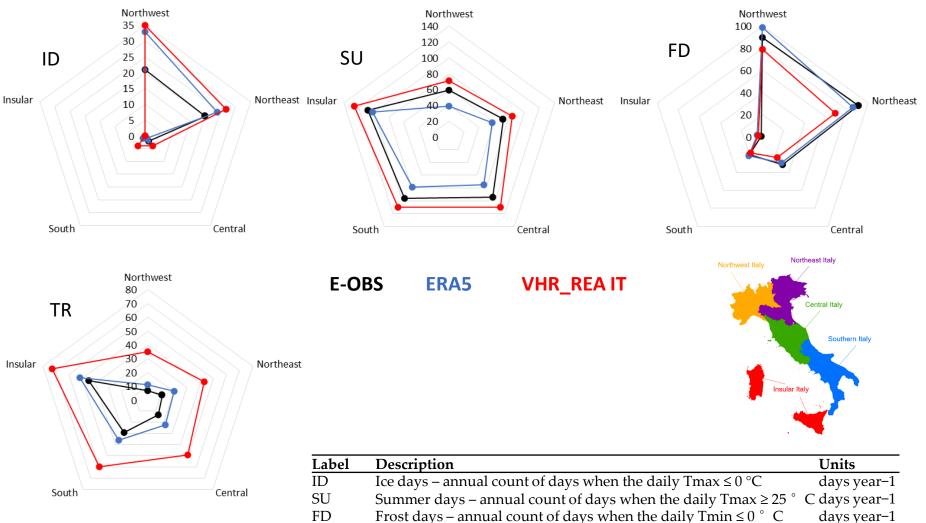
Κ


Ра


1

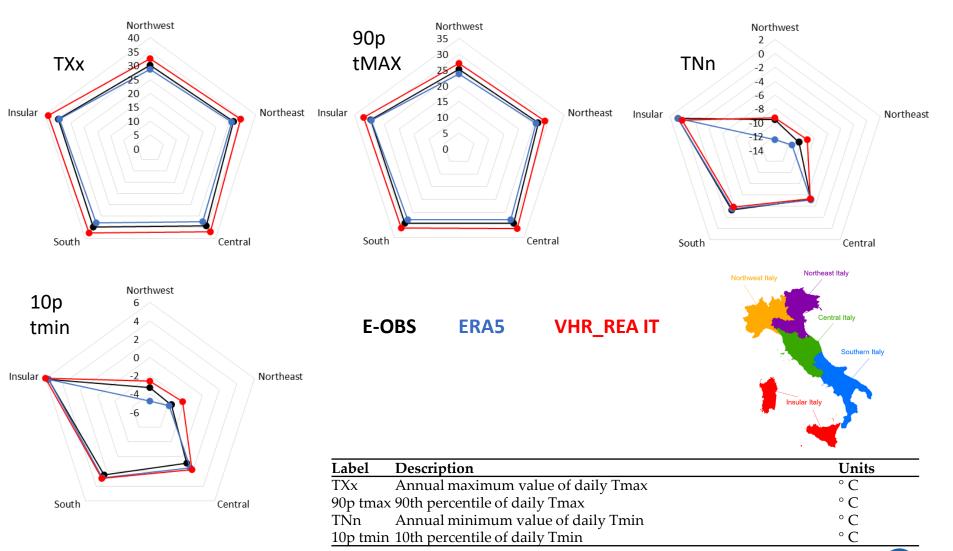
Preliminary evaluation:

2m temperature

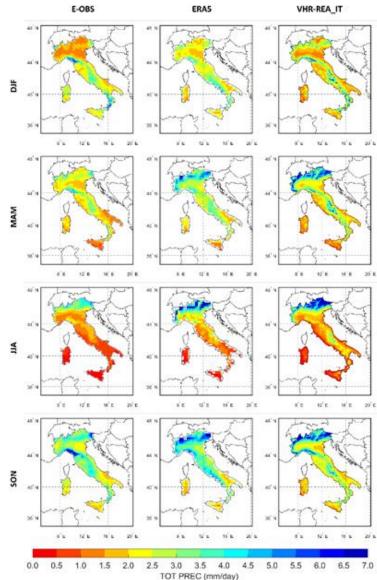


 \cap

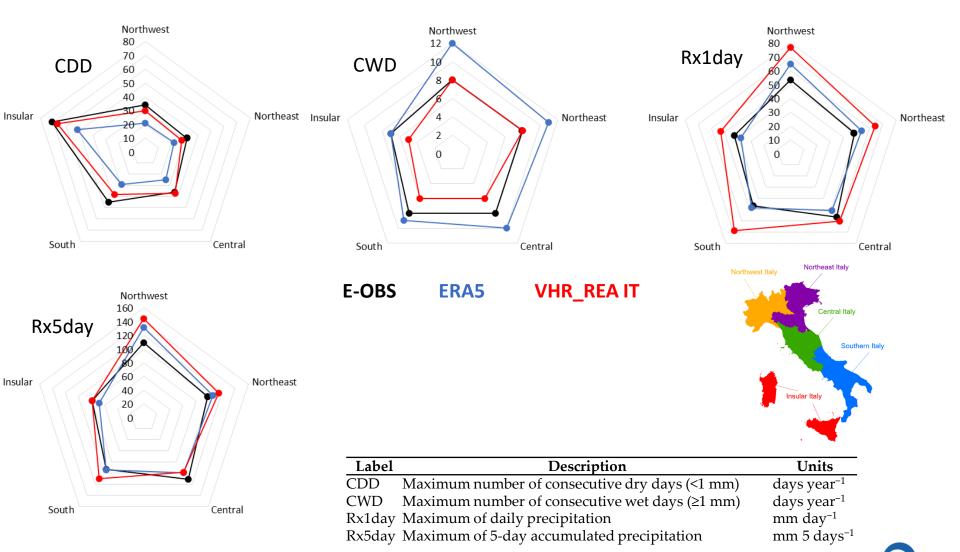
Climate indices: 2m temperature



TR Tropical nights – annual count of days when the daily Tmin ≥ 20 °C days year=1

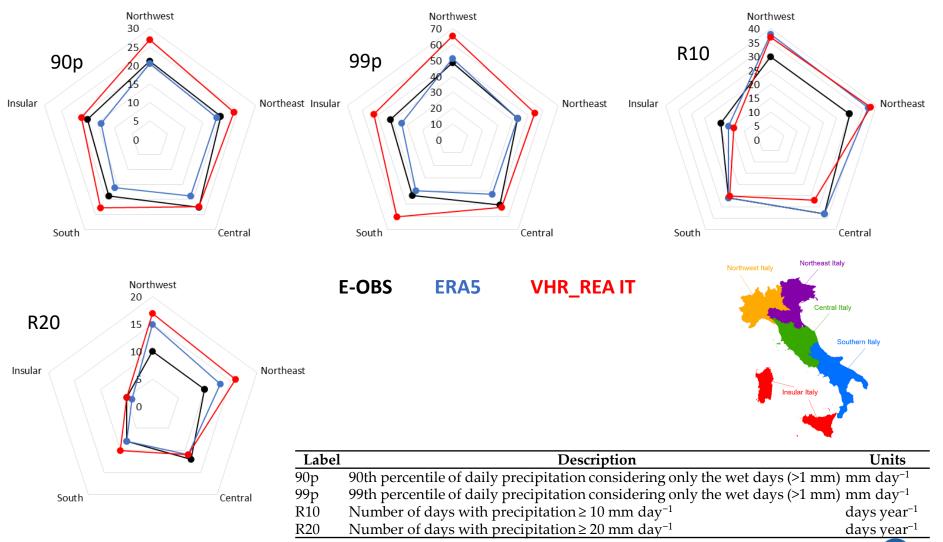

Climate indices: 2m temperature

Preliminary evaluation: total precipitation

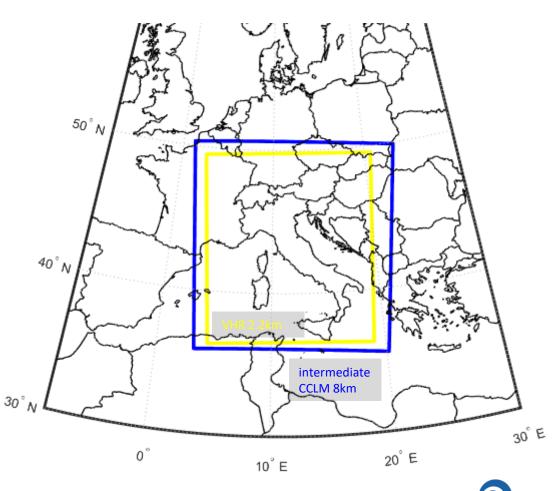


and the second		Bias (%)			$\sigma_{\rm mod}/\sigma_{\rm obs}$				
		DJF	MAM	JJA	SON	DJF	MAM	JJA	SON
	E-OBS	2.27	2.15	1.44	3.02	0.88	0.70	1.09	0.97
Italy	ERA5	12%	33%	50%	17%	0.7	1.5	1.7	1.3
	VHR-REA_IT	0%	24%	42%	-2%	1.1	1.9	1.6	1.4
	E-OBS	1.91	2.42	2.15	3.40	0.39	0.22	0.18	0.37
Northwest Italy	ERA5	30%	51%	70%	31%	0.5	1.4	2.9	1.2
	VHR-REA_IT	29%	51%	42%	22%	0.7	1.6	1.5	0.9
	E-OBS	1.78	2.37	2.52	3.27	0.38	0.26	0.21	0.50
Northeast Italy	ERA5	30%	39%	42%	20%	0.6	1.2	3.1	0.9
	VHR-REA_IT	27%	44%	43%	9%	1.1	1.5	2.0	0.9
	E-OBS	2.97	2.56	1.24	3.86	0.24	0.16	0.08	0.27
Central Italy	ERA5	1%	11%	16%	3%	0.8	1.2	1.8	1.0
	VHR-REA_IT	-15%	-4%	11%	-24%	1.1	1.6	2.7	0.7
	E-OBS	3.01	2.06	0.77	2.83	0.30	0.17	0.09	0.19
South Italy	ERA5	-1%	23%	61%	6%	0.9	1.2	1.9	2.0
	VHR-REA_IT	-9%	17%	86%	-9%	1.3	2.0	3.0	1.5
	E-OBS	2.39	1.47	0.33	2.21	0.12	0.09	0.02	0.08
Insular Italy	ERA5	-10%	15%	29%	-5%	1.0	1.2	3.7	1.8
	VHR-REA_IT	-28%	-12%	42%	-22%	2.5	1.7	6.2	2.2

0


Climate indices: total precipitation

Climate indices: total precipitation



What come next: VHR-PRO_IT dataset for HIGHLANDER project

Dynamical downscaling of CMCC-CM global model GCM (through 2 step nesting approach) under the IPCC RCP8.5 scenario. The driving data provided by the GCM CMCC-CM were downscaled first at an intermediate resolution (8km) and then further downscaled at 2.2 km over Italy.

Domain	Italian Peninsula			
Period	1989-2050 HIST + scenario RCP8.5			
Model	COSMO-CLM			
Forcing	GCM CMCC-CM \rightarrow intermediate CCLM 8km \rightarrow VHR 2,2 km			
Spatial resolution	0,02° - 2.2km			
НРС	Cineca#GALILEO100			

Conclusions

The dataset VHR-REA_IT aims to provide a set of unprecedented **high-quality** and **very highresolution historical climate data** for **Italy** in the period **1989-2020**

- Eval
- VHR-REA_IT shows good agreement of 2m temperature with the observations in MAM, SON and DJF seasons and a slight warm bias over all the Italian peninsula in JJA.
- VHR-REA_IT presents major variability of precipitation with respect to ERA5 driving model, especially in the Southern and Insular Italy. The wet bias is more relevant in JJA over all the domain.
- The analysis of extreme climate indicators (ETCDDI) reflects the tendency of VHR-REA_IT to amplify climate dynamics due to the spatial resolution refinement

Application

Typical use of this dataset is research and downstream services, e.g., for decision support systems in different sectors highly affected by changes in climate trends, variability, and extreme events, as in the case of Italy.

- Process-based hydrological modelling can be applied to simulate water cycle components
- Production of indicators related to meteorological-hydrological-agricultural drought attributes.
- Crop or forest growth models assessing vegetation productivity through reproduction of carbon, water, and energy exchanges, as well as feed fire hazard indicators and fire behavior simulations
 The VHR-REA_IT is available on Data Delivery System (DDS) of CMCC (<u>http://dds.cmcc.it</u>), through the DDS web user interface (UI), using the DDS Python client.

Acknowledgments

The ongoing activity is performed using the COSMO model in CLimate Mode (COSMO-CLM). We acknowledge the members of the CLM-Community for their common efforts to provide the reference model setup, the forcing data and maintain the codes.

The downscaling activity was performed by REMHI division of CMCC Foundation exploiting the **Consorzio Interuniversitario del Nord-Est per il Calcolo Automatico (CINECA)** supercomputer cluster @GALILEO

CLM-ASSEMBLY 2021 Web conference September 23rd, 2021